Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia

نویسندگان

  • Carrolee Barlow
  • Shinji Hirotsune
  • Richard Paylor
  • Marek Liyanage
  • Michael Eckhaus
  • Francis Collins
  • Yosef Shiloh
  • Jacqueline N Crawley
  • Thomas Ried
  • Danilo Tagle
  • Anthony Wynshaw-Boris
چکیده

A murine model of ataxia telangiectasia was created by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. The majority of animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulate the ataxia telangiectasia phenotype in humans, providing a mammalian model in which to study the pathophysiology of this pleiotropic disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice.

Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated (Atm)-deficient ani...

متن کامل

Mice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest.

Protein phosphatase 5 (Ppp5), a tetratricopeptide repeat domain protein, has been implicated in multiple cellular functions, including cellular proliferation, migration, differentiation and survival, and cell cycle checkpoint regulation via the ataxia telangiectasia mutated/ATM and Rad3-related (ATM/ATR) signal pathway. However, the physiological functions of Ppp5 have not been reported. To con...

متن کامل

Molecular Bases of Ataxia Telangiectasia: One Kinase Multiple Functions

Ataxia Telangiectasia (A-T) is an autosomal recessive hereditary progressive neurodegener‐ ative and multisystem disease characterized by cerebellar ataxia, telangiectasia, recurrent si‐ nopulmonary infections, variable immunologic defects among which a significantly higher incidence of leukaemia and lymphoma and type 2 diabete. This disorder has been clearly linked to the loss of expression of...

متن کامل

Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice.

Ataxia-telangiectasia (A-T) is a genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype and suffer primarily from progressive ataxia caused by degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical features of the human disease. We previo...

متن کامل

Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice.

Ataxia telangiectasia (AT) is a hereditary human disorder resulting in a wide variety of clinical manifestations, including progressive neurodegeneration, immunodeficiency, and high incidence of lymphoid tumors. Cells from patients with AT show genetic instability, hypersensitivity to radiation, and a continuous state of oxidative stress. Oxidative stress and genetic instability, including DNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 86  شماره 

صفحات  -

تاریخ انتشار 1996